Product of all the solution of the equation ${x^{1 + {{\log }_{10}}x}} = 100000x$ is
$10$
$10^5$
$10^{-5}$
$1$
If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to
If non-zero real numbers $b$ and $c$ are such that $min \,f\left( x \right) > \max \,g\left( x \right)$, where $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ and $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; then $\left| {\frac{c}{b}} \right|$ lies in the interval
Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is
Let $f ( x )=2 x ^{ n }+\lambda, \lambda \in R , n \in N$, and $f (4)=133$, $f(5)=255$. Then the sum of all the positive integer divisors of $( f (3)- f (2))$ is
Which one of the following is not bounded on the intervals as indicated